RULE 1. If the addends have the same sign, add the two numbers and prefix their common sign.
(+62) + (+14) = +76 (-29) + (-13) = -42
RULE 2. If the addends have different signs, find the difference between the two numbers and prefix the sign of the number that is the greater distance from zero.
(+15) + (-8) = +7 (+9) + (-30) = -21
1. (-5) + (-6) = 3. (-3) + (-6) = 5. (-2) + (-8) = 7. (-9) + (+10) = 9. (+12) + (+10) = 11. (-29) + (-11) = 13. (+42) + (-19) = 15. (+31) + (-56) = 17. -8 + 10 = 19. 75 + (-25) = 21. 73 + 47 = 23. 78 + (-30) = 25. 75 + (-25) = 27. 200 + 100 = 29. 355 + (-163) = 31. 34 + (-16) = 33. 72 + (-12) = 35. 1/2 + -1/2 = 37. 1/4 + (-1/2) = 39. 1/4 + -1/2 = 41. 16 + 16 = 43. 3 + (-8) + 7 = 45. 12 + 5 + (-8) + 20 + (-16) = |
2. (+9) + (-4) = 4. (-4) + (-4) = 6. (-7) + (+1) = 8. (-8) + (-5) = 10. (+13) + (-17) = 12. (-36) + (+24) = 14. (-33) + (+42) = 16. (+65) + (+15) = 18. 7 + (-18) = 20. 33 + (-22) = 22. 86 + (-58) = 24. 100 + 50 = 26. 150 + 50 = 28. 132 + (-181) = 30. 900 + 200 = 32. 14 + 43 = 34. 4 + 17 = 36. 7 + (-7) = 38. -1/4 + 1/4 = 40. 17 + 4 = 42. 2436 + (-1064) = 44. 11 + 5 + (-2) = 45. 12 + 5 + (-8) + 20 + (-16) = |
RULE 1. Because every subtraction problem can be rewritten as a corresponding addition problem, use the following rule: To subtract an integer, add its opposite.
1. (-8) – (+9) = The opposite of +9 is –9. Change sign to opposite: (-8) + (-9) = -17 using integer addition rulesRULE 1 examples:
1. (+7) – (+4) = (+7) + (-4) = +3
2. (+5) – (-6) = (+5) + (+6) = +11
3. (-3) – (+8) = (-3) + (-8) = -11
Alternate RULE 1. To subtract signed numbers:
Alternate RULE 1 examples:
Answer Key for Subtracting Integers